MENU

How to Identify SARS-CoV-2 Virus Derived Peptides

Posted by Yuri Poluektov on Nov 19, 2020 12:00:00 PM

In our previous blog post (How to screen SARS-CoV-2 peptides to facilitate T cell research) we have described how the immune system samples all of the pathogenic proteins by looking at the small fragments of each protein and making a determination on whether that fragment (also referred to as peptide) belongs in the body. We have also described in our previous blog post (Find Human MHC Class I Dominant Peptides) the multiple MHC alleles that we tested for their ability to present SARS-CoV-2 peptides.

Read More

Topics: Tetramer, QuickSwitch, SARS-CoV-2

Find Human MHC Class I Dominant Peptides

Posted by Yuri Poluektov on Oct 28, 2020 12:00:00 PM

In our previous blog post (How to screen SARS-CoV-2 peptides to facilitate T cell research) we have described how the immune system samples all of the pathogenic proteins by looking at the small fragments of each protein and making a determination on whether that fragment (also referred to as peptide) belongs in the body. Not all peptides are presented equally and most of the amino acids that make up the proteins of the pathogen remain completely invisible to our immune system. One way the immune system can expand its ability to sample a larger variety of pathogen-derived peptide fragments is to have multiple varieties of MHC molecules each geared to detect a certain type of peptide.

Read More

Topics: Tetramer, QuickSwitch, SARS-CoV-2

Comparing Theoretical Peptide-MHC Binding Affinity to Real Values produced by the QuickSwitch™ Platform

Posted by Yuri Poluektov on Sep 29, 2020 12:00:00 PM

In our previous blog post (How to screen SARS-CoV-2 peptides to facilitate T cell research) we have described how the immune system samples all of the pathogenic proteins by looking at the small fragments of each protein and making a determination on whether that fragment (also referred to as peptide) belongs in the body. Not all peptides are presented to the immune system equally and most of the amino acids that make up the proteins of the pathogen remain completely invisible to our immune system. It is only a small portion of the entire amino acid sequence that gets examined by the immune system. That is why it is crucial to know which peptides from the pathogen you are trying to study are actually presented to the immune system, and, more importantly, which of those peptides are able to stimulate an immune response.

Read More

Topics: Tetramer, QuickSwitch, SARS-CoV-2

How to screen SARS-CoV-2 peptides to facilitate T cell research

Posted by Yuri Poluektov on Aug 17, 2020 12:00:00 PM

Whenever our immune system is faced with a challenge, be it a multicellular parasite, a bacteria, a virus, or even cancer, this threat is detected and sampled primarily by the protein sequence of the pathogen in question. Other aspects of the pathogen, such as its glycosylation pattern or the peculiar structures of its RNA and DNA molecules could have a strong effect on how the immune system deals with it. But, overall, the adaptive aspect of the mammalian immune system has evolved over many years to examine the protein sequences that make up the invading pathogen. The key function of our immune system relies on its ability to constantly sample all proteins present in our body and determine whether it is a protein that belongs or a protein that must be eradicated together with any cells or organisms that produce it. Unfortunately, most proteins are too large for the immune system to sample at once and so it has developed a mechanism to cut the full-length proteins into small stretches of amino acids which are examined individually.

Read More

Topics: Tetramer, QuickSwitch, covid-19, SARS-CoV-2

Screening for COVID-19 T-cell peptides and immune monitoring with MHC tetramers in a single assay

Posted by Pirouz Daftarian, Ph.D., Marc Delcommenne, Ph.D. on Mar 17, 2020 3:00:00 AM

COVID-19 infected cells can be recognized by T-cells only after SARS-CoV-2 peptides are processed and presented in the context of self MHCs.

Identifying these peptides have essential utilities:

  • Immune monitoring: Using peptide-MHC tetramers to assess vaccine-induced immunity
  • Designing potent vaccines that elicit durable responses
T-cells are activated only by interacting with processed peptides (e.g. of SARS-CoV-2) that sit in the groove of MHC Class I and II molecules. Identifying these peptides can be used (in forms of peptide-MHC tetramers) to assess vaccine induced immunity and assist in designing potent vaccines with durable responses.
Read More

Topics: Tetramer, Peptide, covid-19, SARS-CoV-2, vaccine, MHC

Subscribe to Email Updates

Recent Posts