Bindi M. Doshi, PhD

Recent Posts

New tetramer for vaccine research targeting Tuberculosis and Ag85B specific T-cells

Posted by Bindi M. Doshi, PhD on Jul 23, 2019 1:00:00 PM

Tuberculosis (TB) is caused by the Mycobacterium tuberculosis and usually targets the lungs.  This disease is spread when an infected person sneezes or coughs, thereby releasing small droplets into the air and passing to a new individual. When left untreated, death can occur. Thankfully, there is a vaccine for TB called Bacille Calmette-Gurin (BCG) and is often given to young children.  This vaccine has been shown to last 15 years. There is some doubt about the efficacy of the BCG vaccine in adult pulmonary TB1,2.  For this reason, more research needs to be done to provide a safe and effective TB vaccine for adults.

Antigen (Ag) 85 is gaining interest among vaccine development research.  Ag85 is preserved in Mycobacterium and allows bacteria to evade the host immune response by preventing mechanisms involved in terminating the infection3.  Research continues to uncover exactly how Mycobacterium tuberculosis persists and remains in an infected person while evading the immune system.  New advances in immunology are giving researchers a greater picture for how the immune response is manipulated by this bacteria.  It is clear that with greater understanding of how the human immune response system functions and how different infections manipulate this system, that targeted therapies, including vaccines, can be developed to combat the infection successfully.

MBL International is pleased to announce the launch of our new tetramer targeted to Ag85B-specific T cells for murine studies. As always, our team is on hand for any question or request that you may have.

Product Code Target Conjugate
TS-M719-1 I-Ab Mtb Ag85B240-254 Tetramer-FQDAYNAAGGHNAVF PE
TS-M719-2 I-Ab Mtb Ag85B240-254 Tetramer-FQDAYNAAGGHNAVF APC

Learn More

(1) Davenne,T., & McShane, H. (2016). Why don't we have an effective tuberculosis vaccine yet?. Expert review of vaccines15(8), 1009–1013. doi:10.1586/14760584.2016.1170599

(2) Andersen, P., & Doherty, T.M. (2005). The success and failure of BCG - implications for a novel tuberculosis vaccine. Nature Reviews Microbiology,3(8), 656-662. doi:10.1038/nrmicro1211

(3) Babaki, M. K., Soleimanpour, S., & Rezaee, S. A. (2017). Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microbial Pathogenesis, 112, 20-29. doi:10.1016/j.micpath.2017.08.040

Read More

Topics: Tetramer, Immunology, tuberculosis

Why protein phosphorylation is crucial in disease research

Posted by Bindi M. Doshi, PhD on Jun 13, 2019 1:00:00 PM

Protein phosphorylation is quintessential for specific pathways to function.  This function can be influenced by internal or external factors.  It is a reversible action with the involvement of kinases and phosphatases1.  This activity is crucial in the cell cycle, apoptosis, and signal transduction pathways.  If a protein is phosphorylated or dephosphorylated when it shouldn’t be, there can be severe disruptions to the cellular pathway.  At times, the phosphorylation state can be the cause of a disease.  This has been found in degenerative diseases, cancers, and various pathways involving the immune system2.  For instance, kinase inhibitors have been successful in cancer treatments. 

Enzymes control phosphorylation.  Kinases function to add phosphate groups to proteins and phosphatases function to remove phosphates.  Typically, phosphorylation occurs on serine, threonine, or tyrosine residues. This process can be very quick or it can take many hours. It results in a conformational change which either activates or inactivates protein activity.

Read More

Topics: Antibodies, phosphorylation, pathways, kinases

3D cell imaging made easier

Posted by Bindi M. Doshi, PhD on Jan 29, 2019 1:00:00 PM

There is an increase in demand for scientists to show cell migration and proliferation on a surface that more closely mimics an in vivo environment.  Using a gel surface can be tricky.  Therefore, MBL has a unique and innovative technology where a proprietary plastic film is used for plating cells.  This technology is easy to use with many different cell types and is reproducible every time.  Please see the table below comparing various techniques for 3D cell cultures:

Read More

Topics: 3D Cell Culture, NCP

Shed a little light in your cells using anti-GFP

Posted by Bindi M. Doshi, PhD on Oct 24, 2018 1:02:00 PM

In 2008, the Nobel Prize in Chemistry was awarded to Dr. Roger Y. Tsien, Dr. Osamu Shimomura, and Dr. Martin Chalfie for their discovery and development of the green fluorescent protein (GFP).  Since then, fluorescent protein (FP) technology has made drastic advancements by many researchers.  FP antibodies are used in multiple applications.

Read More

Topics: Antibodies, rfp, gfp

How do I even get started? Lessons for setting up your experiments

Posted by Bindi M. Doshi, PhD on Apr 26, 2018 1:00:00 PM

Biology can be daunting.  Experiments can be daunting.  Setting up your own biological experiments can be terrifying!  But it doesn’t need to be. 

Read More

How to detect functional PCSK9 quickly and easily 

Posted by Bindi M. Doshi, PhD on Mar 30, 2018 2:45:00 PM

PCSK9 remains an important target in cholesterol research.  One of the hurdles in this research area is determining which PSCK9 form is present and binding with LDLR.  Our new Human PCSK9 Functional Assay Kit is designed to detect active PSCK9 binding with LDLR. 

Read More

Topics: PCSK9, Metabolism, PCSK9 ELISA Kit

How to detect functional PCSK9 quickly and easily

Posted by Bindi M. Doshi, PhD on Jun 27, 2017 10:00:00 AM

PCSK9 remains an important target in cholesterol research.  One of the hurdles in this research area is determining which PSCK9 form is present and binding with LDLR.  Our new Human PCSK9 Functional Assay Kit is designed to detect active PSCK9 binding with LDLR. 

Read More

Topics: PCSK9, Metabolism, PCSK9 ELISA Kit

4 Cool Science Discoveries in 2016

Posted by Bindi M. Doshi, PhD on Dec 29, 2016 2:38:31 PM

As 2016 draws to a close, let’s look back on some significant advances made in science.

Read More

Why Autophagy research won a Nobel Prize

Posted by Bindi M. Doshi, PhD on Nov 16, 2016 9:01:39 AM

The process of autophagy was first recognized in the late 1950s and it was thought of as bulk “junk” removal. Then, dedicated scientists did a little more digging and found there is an amazing methodology to the “junk” removal.  It was discovered that there is rhyme and reason for how a cell decides if and when its components should undergo degradation.  Autophagy is rather specific and aids in cell survival by making sure the cell has essential components during times of flux.  Autophagy can be selective (i.e. mitophagy) or non-selective (i.e. starvation-induced).  Using this method, the cell can have non-essential components recycled or send them to onto autophagolysosomes to be degraded.  It is more efficient for a cell to be able to recycle as much as it can, rather than to wait for new proteins to come into the picture.  Autophagy is also crucial for clearing out “junk” such as misfolded or aggregated proteins. Research in autophagy has helped provide a better understanding for how a cell is able to survive even under poor conditions.

Read More

Topics: Autophagy

What does mitochondria have to do with mitophagy?

Posted by Bindi M. Doshi, PhD on Sep 20, 2016 11:42:36 AM

 What is mitophagy? It is when damaged mitochondria are removed from the cell by autophagy.  The damaged mitochondria end up in lysosomes for their final disposal.  This whole process is to maintain and assure proper cellular function.   The importance of this biological process is that it has been implicated in disease states such as cancer and Parkinson’s disease.

Read More

Topics: mitophagy, Autophagy, mitochondria cell death, keima red

How to find and read a publication

Posted by Bindi M. Doshi, PhD on Jun 29, 2016 11:05:05 AM

When you start working in a new lab or working on a new research project, one of the first things to do is look up publications and learn about the field and what has been accomplished. This will help determine the experiments you will run.  It gives you a foundation to build on.  But how do you read a publication?  How do you know it’s worth your while to muster through?  Some publications are miles long with a million figures!  EEKS!  Don’t be frightened.  Keep reading to find out how to tackle a complicated publication and not go crazy.

Read More

Who’s that on my mRNA?

Posted by Bindi M. Doshi, PhD on May 17, 2016 2:44:01 PM

You have an RNA of interest aka your favorite RNA. The question is: which RBPs interact with it? Who are these RBPs and what are their intentions with your precious RNA?

Read More

Topics: RNA, Epigenetics, Gene Regulation, RiboTrap, RBP

Don’t rip your hair out- use our RIP certified antibodies!

Posted by Bindi M. Doshi, PhD on May 2, 2016 7:47:32 AM
What are RBPs (RNA binding proteins)? Very briefly, they are proteins that bind to RNA. (You probably figured that out already.) More importantly, they have a role in regulating RNA as part of the ribonucleoprotein complex (RNP). They are involved in interactions that regulate posttranscriptional  gene regulation1. Not only are RBPs important because of their interactions, but also because it was found that mutations in RBPs can lead to disease formation 2, 3, 4. In order to investigate which RBPs bind with RNAs, a technique called RNP immunoprecipitation (RIP) can be used5.  And in order to have an amazing RIP experiment, one needs an equally amazing antibody.
Read More

Topics: RIP Chip, RNA, Epigenetics, Gene Regulation

Don't FRET- You've got Fluoppi!

Posted by Bindi M. Doshi, PhD on Sep 29, 2015 8:41:14 AM
Visualizing protein-protein interaction (PPI) is pretty neat. You are able to glimpse into a really unique aspect of nature that many people don’t get to see. It’s like watching lions and zebras interact but without the bloody violence.  However, anyone who has tried to visualize two proteins interacting can attest to how difficult it can be. It can involve long hours, uncertainty, and of course, photo bleaching. Blech! MBL’s new technology, Fluoppi, makes visualizing protein-protein interaction a little easier. This technology utilizes fluorescent tags that have a high signal:noise ratio. The only equipment you need is a microscope to observe fluorescence.
Read More

Topics: Fluoppi, Fluorescent Proteins

Colorimetric?  Fluorometric?  How to choose the right platform for your ELISA

Posted by Bindi M. Doshi, PhD on Sep 21, 2015 11:41:52 AM

What happens when you use a black well plate for a fluorometric ELISA assay reading?  What happens when you use a clear well plate for a colorimetric ELISA assay reading?  Well the short answer is that you made the right plate decision!

Read More

Topics: Kits and Assays

Autophagy Watch...What the Flux is that all about?

Posted by Bindi M. Doshi, PhD on Jul 21, 2015 1:49:00 PM

What does Autophagy Flux even mean?  It’s not in the Urban dictionary.  Dear reader, you have come to the right place to learn a little more about autophagy flux and how our Autophagy Watch kit can help you.

Read More

Topics: Autophagy

Why Smart-IP is the smart way to IP

Posted by Bindi M. Doshi, PhD on May 28, 2015 10:49:05 AM

You have been given the mission to start a new project. A tiny tube is put in your hands and you’re told it contains a potentially interesting protein and your job is to characterize it. After you wipe nervous sweat from your brow, you get down to business. Step one- how to isolate your new buddy? Immunoprecipitation can help with this question! You determine which epitope tag is on your protein and go to to see what you can buy to help this new adventure. You see there are antibodies conjugated to magnetic beads, which help protein pull downs from cell lysates. It's easy, it's fast.  Hmmmm- promising.

Read More

Topics: Epitope Tag

The ABC's of LC3

Posted by Bindi M. Doshi, PhD on Apr 14, 2015 12:22:39 PM

What are LC3 isoforms all about? What do they do?  How are they different?  How are they involved in autophagy?

Read More

Topics: Autophagy

Investigating Parkinson's Disease Part III: The Role of PARK7/DJ-1

Posted by Bindi M. Doshi, PhD on Mar 17, 2015 7:00:00 AM
In the biomedical field, DJ-1 is a target of interest in a variety of disease states.  DJ-1 is considered a contender for a biomarker in the detection of early stage cerebral infraction since it’s concentration increases 3 hours after cerebral injury. When DJ-1 is expressed in excess, it can lead to cancer. For instance, breast cancer patients show increased levels of circulating DJ-1 and anti-DJ-1 antibodies. 3  However, a loss of function can lead to neuodegenerative diseases such autosomal early-onset Parkinson’s disease. 2  
Read More

Topics: Neuroscience

Investigating Parkinson's Disease Part II: The Role of PARK5/UCHL1

Posted by Bindi M. Doshi, PhD on Mar 16, 2015 5:03:04 PM
PARK genes are associated with Parkinson's Disease. The cause of Parkinson's Disease is not currently known and the progression of the disease (on a molecular level) is not well established.  Human UCHL1 ELISA Kit  and Mouse UCHL1 ELISA Kit  has the ability to specifically detect UCHL1.
Read More

Topics: Neuroscience

Why bother knowing if you are detecting Pro-IL18 or active IL-18?

Posted by Bindi M. Doshi, PhD on Mar 2, 2015 9:48:00 AM

il-18-01Antibodies are wonderful.  They can act as little detectives to help you determine if the protein you’re interested in is involved in a certain process or help characterize the function.  But what if your favorite protein has two forms?  Is your antibody sophisticated enough to be able to detect one form over the other?  Does this knowledge help you?  How?  IL-18 is one such protein that has two forms.  It is present when it is inactive and present when it is active.  So what is known about IL-18 and its function and the two forms it can exist in?

Read More

Topics: Immunology, IL-18, Immune Response, Allergy

Subscribe to Email Updates

Recent Posts